In this lecture, we introduce two concepts related to the predictability of dynamical systems -- randomness and chaos. Randomness is introduced as a modeling tool to help reduce the number of dynamical variables that need to be considered to model a system. This approach is known as "stochastic modeling", where "stochastic" comes form the Greek word for "guess" or "conjecture." Stochastic modeling makes the conjecture that a system is random even if the real-world version of the system is not random but is instead complicated. Randomness simplifies model building. We then introduce chaos, which is a very strong sensitivity to initial conditions that creates deterministic behavior over time traces that appear random. We show how that chaos can be caused by (nonlinear) feedback with delay (as in the Mackey-Glass system) with as little as one state variable (stock). We then show that without delay, chaos can occur when there are 3-or-more state variables (stocks). To demonstrate this latter point, we show the Lorenz system and its corresponding Lorenz attractor (an example "strange attractor"). We discuss how the so-called "butterfly effect" relates to this extreme sensitivity to initial conditions (with Jurassic Park references).
Archive of lectures given as part of SOS 212 (Systems, Dynamics, and Sustainability) at Arizona State University with instructor Theodore (Ted) Pavlic.
Thursday, April 14, 2022
Lecture G1 (2022-04-14): Randomness and Chaos
Subscribe to:
Post Comments (Atom)
Popular Posts
-
In this lecture, we introduce two very different concepts – randomness and chaos. These two terms are often mistakenly used as synonyms, but...
-
In this lecture, we review how to simulate a the behavior over time of simple negative feedback dynamical system (the filling of water in a ...
-
In this lecture, we review the Chapter 10 of Morecroft (2015), which revisits a discussion of the function of models and discusses methods o...
-
In this lecture, we cover topics discussed by Morecroft (2015, Chapter 6) on the dynamics of growth and diffusion and relate them to other s...
-
In this lecture, we continue to add complexity to system dynamics models in Vensim and Insight Maker by introducing two different forms of d...
-
In this lecture, we demonstrate how to draw and simulate stock-and-flow diagrams in Insight Maker (a web-based System Dynamics Modeling (SDM...
-
In this lecture, we review the fundamentals of numerical simulation (and Euler's method) for a simple clonal bacteria population system ...
-
In this lecture, we motivate the use of causal loop diagrams (CLD's) to better understand how feedback loops interact in complex system...
-
In this lecture, we discuss how to embellish basic System Dynamics Modeling (SDM) simulation models with additional complexity and more effi...
-
This lecture reviews all content in Units A, B, C, and D in SOS 212 as preparation for the midterm. These topics cover modeling fundamental...
No comments:
Post a Comment